## Analysis 2 9 April 2024

$$
\text { Warm-up: } \int_{2}^{5} k x^{2} \mathrm{~d} x
$$

## Iterated Integrals

An iterated integral requires evaluating one integral after another. They will always be definite integrals.

- The "inside" integral can give a formula as its answer.
- The "outside" integral will usually give a number as the answer.

Example from last week $\int_{0}^{8} \int_{0}^{1} 3 x e^{x y} \mathrm{~d} y \mathrm{~d} x=3 e^{8}-27$ because

- Inside: $\int_{0}^{1} 3 x e^{x y} \mathrm{~d} y=\left.3 e^{x y}\right|_{y=0} ^{y=1}=3 e^{x \cdot 1}-3 e^{x \cdot 0}=3 e^{x}-3$.
- Outside: $\int_{0}^{8}\left(3 e^{x}-3\right) \mathrm{d} x=3 e^{x}-\left.3 x\right|_{x=0} ^{x=8}=3 e^{8}-27$.

We can calculate $\int_{1}^{3} \int_{2}^{5} y x^{2} \mathrm{~d} x \mathrm{~d} y=\int_{1}^{3}(39 y) \mathrm{d} y=156$
First, $\int_{2}^{5} y x^{2} d x=39 y$, just like the warm-up $\int_{2}^{6} k x^{2} d x=39 k$.
Then $\int_{1}^{3} 39 y d y=156$, just like $\int_{1}^{3} 39 t d t=156$ (or $\int_{1}^{3} 39 x d x$ ).

We can calculate $\int_{1}^{3} \int_{2}^{5} y x^{2} \mathrm{~d} x \mathrm{~d} y=\int_{1}^{3}(39 y) \mathrm{d} y=156$.

Front students: $\int_{1}^{3} \int_{2}^{5} y x^{2} \mathrm{~d} y \mathrm{~d} x=\int_{1}^{3}\left(\frac{21}{2} x^{2}\right) \mathrm{d} x=91$. Why are these the same?

Back students: $\int_{2}^{5} \int_{1}^{3} y x^{2} \mathrm{~d} y \mathrm{~d} x=\int_{2}^{5}\left(4 x^{2}\right) \mathrm{d} x=156$.

Analysis 1: $\int_{a}^{b} f(x) d x$


Area


Area

The advantage of this version is that it is entirely 1D, which is good since $f(x)$ has only 1 input.


Anyching

Analysis 2: $\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$ $=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$


Volume


## $\iint$ over a reclangle

If both the $\int \ldots \mathrm{d} x$ and the $\int \ldots \mathrm{d} y$ have constants (e.g., numbers) for the integral bounds, then the iterated integral describes adding up values of a function over a rectangular region.

For example, "integrate $y x^{2}$ over the rectangle $2 \leq x \leq 5,1 \leq y \leq 3$ "
means to calculate $\int_{1}^{3} \int_{2}^{5} y x^{2} \mathrm{~d} x \mathrm{~d} y=156$ from before.
The reason $\int_{2}^{5} \int_{1}^{3} y x^{2} \mathrm{~d} y \mathrm{~d} x$ is also 156 is because this integral setup describes exactly the same $x y$-rectangle.

Although we cannot simply replace $\mathrm{d} x \mathrm{~d} y$ by $\mathrm{d} y \mathrm{~d} x$ in a double integral, both of these represent a tiny piece of area. For this reason it is common to see "d $A$ " used when writing double integrals.

For example,
" $\iint_{R} \frac{\sin (y)}{x} \mathrm{~d} A$, where $R$ is the rectangle with $1 \leq x \leq 9$ and $0 \leq y \leq \pi$." means exactly the same thing as

$$
\int_{0}^{\pi} \int_{1}^{9} \frac{\sin (y)}{x} d x d y "
$$

or " $\int_{1}^{9} \int_{0}^{\pi} \frac{\sin (y)}{x} d y d x$ ".

The following tasks are exactly the same:

- Find $\iint_{R} \frac{\sin (y)}{x} \mathrm{~d} A$ where $R$ is the rectangle with $1 \leq x \leq 9$ and $0 \leq y \leq \pi$.
- Integrate $f(x, y)=\frac{\sin (y)}{x}$ over the rectangle with $(1,0)$ as the bottom left corner and $(9, \pi)$ as the top right corner.
- Calculate $\iint_{R} \frac{\sin (y)}{x} \mathrm{~d} A$ with $R=\{(x, y): 1 \leq x \leq 9,0 \leq y \leq \pi\}$.
- Evaluate $\iint_{R} \frac{\sin (y)}{x} \mathrm{~d} A$ with $R=[1,9] \times[0, \pi]$.
- Find $\int_{0}^{\pi} \int_{1}^{9} \frac{\sin (y)}{x} \mathrm{~d} x \mathrm{~d} y$. Calculate $\int_{1}^{9} \int_{0}^{\pi} \frac{\sin (y)}{x} \mathrm{~d} y \mathrm{~d} x$.

To get the answer, we have to do one of these.

Task: Find $\iint_{R} \frac{\sin (y)}{x} \mathrm{~d} A$ where $R$ is the rectangle with $(1,0)$ as the bottom left corner and $(9, \pi)$ as the top right corner.

## Volume vs. mass

If $f(x, y)$ is thought of as height, then $\iint_{R} f \mathrm{~d} A$ calculates volume $(f>0)$. If $f(x, y)$ is thought of as density, then $\iint_{R} f \mathrm{~d} A$ calculates mass $(f>0)$. If $f(x, y)$ is thought of as charge density, then $\iint_{R} f \mathrm{~d} A$ calculates total charge.

- Example: $\int_{1}^{5} \int_{1}^{3} y \mathrm{~d} y \mathrm{~d} x=16$ is the mass of a rectangle whose density is $f(x, y)=y$ (so it is more dense at the top, less dense at the bottom).


How can we calculate $\iint_{D}(x+y) \mathrm{d} A$ if $D$ is the region below?


Answer: $\iint_{D}(x+y) \mathrm{d} A=\int_{0}^{2} \int_{1}^{5}(x+y) \mathrm{d} y \mathrm{~d} x+\int_{2}^{6} \int_{1}^{3}(x+y) \mathrm{d} y \mathrm{~d} x$ or various other sums of two iterated integrals.

Example A: $\int_{0}^{2} \int_{1}^{5}(x+y) \mathrm{d} y \mathrm{~d} x=\int_{0}^{2}(4 x+12) \mathrm{d} x=32$.



The calculation of Task 2 is not very much harder than Task 2, but what does this new iterated integral mean?

## Double integral visualization



Volume


Anyching

Ex. A used $\int_{0}^{2} \int_{1}^{5}(x+y) d y d x$


Ex. B used $\int_{0}^{2} \int_{1}^{2 x+1}(x+y) d y d x$


Rectangles and triangles are both very common regions for double-integrals. What other regions can we use?

## Different kinds of regions

The way we write an iterated integral for $\iint_{D} f \mathrm{~d} A$ depends on the shape of
the region $D$.

- Rectangle: $\int_{\text {left }}^{\text {right }} \int_{\text {bot. }}^{\text {top }} f \mathrm{~d} y \mathrm{~d} x$ or $\int_{\text {bot. }}^{\text {top }} \int_{\text {left }}^{\text {right }} f \mathrm{~d} x \mathrm{~d} y$
- L/R sides are walls (or points): $\int_{\text {left }}^{\text {right }} \int_{\text {bottom fn. }}^{\text {top function }} f \mathrm{~d} y \mathrm{~d} x$
- Top and bottom are flat (or points): $\int_{\text {bot. }}^{\text {top }} \int_{\text {left fn. }}^{\text {right fn. }} f \mathrm{~d} x \mathrm{~d} y$



## Different kinds of regions

The way we write an iterated integral for $\iint_{D} f \mathrm{~d} A$ depends on the shape of
the region $D$.
There are two other common region shapes that we will not be using in this course (but you might see them in other classes in the future):

- Pie slice, ring, other piece of a disk: $\int_{\text {start angle }}^{\text {stop angle }} \int_{\text {inner rad. }}^{\text {outer rad. }} \underbrace{r \mathrm{~d} r \mathrm{~d} \theta}_{\mathrm{d} A}$

- Region bounded by level curves: $\int_{a}^{b} \int_{c}^{d} f \underbrace{J \mathrm{~d} u \mathrm{~d} v}_{\mathrm{d} A}$
- The expressions

$$
\int_{0}^{1} \int_{2}^{8} x^{3} \mathrm{~d} y \mathrm{~d} x \quad \int_{1}^{4} \int_{v}^{v+1} u \mathrm{~d} u \mathrm{~d} v \quad \int_{2}^{e} \int_{\sin (y)}^{3 y} x^{y} \mathrm{~d} y \mathrm{~d} x
$$

are all examples of iterated integrals and double integrals (both).

- Expressions like $\iint_{R} x \cos (y) \mathrm{d} A$ are also double integrals (but not iterated integrals).

However, I will often use "double" and "iterated" interchangeably.

- Iterated integrals can also be used for triple integrals $\iiint_{R} f \mathrm{~d} V$ in 3D, but those are not part of this course.

Example: Find $\iint_{R} \frac{3}{4} e^{\left(x^{3 / 2}\right)} \mathrm{d} A$ with $R$ bounded by $y^{2}=x$ and $x=4$.
This could also be written "integrate $\frac{3}{4} e^{\left(x^{3 / 2}\right)}$ over the region bounded by ...".

Step 0: Draw the region.
Step 1: Write an iterated integral.

Step 2\&3: Evaluate the inside integral (2), then the outside (3).


Example: Find $\iint_{R} \frac{3}{4} e^{\left(x^{3 / 2}\right)} \mathrm{d} A$ with $R$ bounded by $y^{2}=x$ and $x=4$.
Step 1: Write an iterated integral.

$$
\int_{-2}^{2} \int_{y^{2}}^{4} \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} x \mathrm{~d} y \quad \text { or } \quad \int_{0}^{4} \int_{-\sqrt{x}}^{\sqrt{x}} \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} y \mathrm{~d} x
$$



Example: Find $\iint_{R} \frac{3}{4} e^{\left(x^{3 / 2}\right)} \mathrm{d} A$ with $R$ bounded by $y^{2}=x$ and $x=4$.
Step 1: Write an iterated integral.

$$
\int_{-2}^{2} \int_{y^{2}}^{4} \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} x \mathrm{~d} y \quad \text { or } \quad \int_{0}^{4} \int_{-\sqrt{x}}^{\sqrt{x}} \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} y \mathrm{~d} x
$$

Note: This cannot be $\int_{-2}^{2} \int_{0}^{4} \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} x \mathrm{~d} y$ because $\int_{-2}^{2} \int_{0}^{4} \ldots \mathrm{~d} x \mathrm{~d} y$ describes
a rectangle $\left(\int_{0}^{4} \int_{-2}^{2} \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} y \mathrm{~d} x\right.$ is also a rectangle).


Example: Find $\iint_{R} \frac{3}{4} e^{\left(x^{3 / 2}\right)} \mathrm{d} A$ with $R$ bounded by $y^{2}=x$ and $x=4$.
Step 1: Write an iterated integral.

$$
\int_{-2}^{2} \int_{y^{2}}^{4} \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} x \mathrm{~d} y \quad \text { or } \quad \int_{0}^{4} \int_{-\sqrt{x}}^{\sqrt{x}} \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} y \mathrm{~d} x
$$

Step 2: Evaluate, starting with the inside integral.

or $\quad \int_{-\sqrt{x}}^{\sqrt{x}} \frac{3}{4} e^{x^{3 / 2}} d y$
There is no formula with (?) ${ }^{\prime} x=e^{x^{3 / 2}}$.

Example: Find $\iint_{R} \frac{3}{4} e^{\left(x^{3 / 2}\right)} \mathrm{d} A$ with $R$ bounded by $y^{2}=x$ and $x=4$.
Skep 1: Write an iterated integral. $\int_{0}^{4} \int_{-\sqrt{x}}^{\sqrt{x}} \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} y \mathrm{~d} x$
Step 2: Evaluate, starting with the inside integral.
$\int_{-\sqrt{x}}^{\sqrt{x}} \frac{3}{4} e^{x^{3 / 2}} d y=\left.\frac{3}{4} e^{x^{3 / 2}} y\right|_{y=-\sqrt{x}} ^{y=\sqrt{x}}=\frac{3}{4} e^{x^{3 / 2}} \cdot 2 \sqrt{x}=e^{x^{3 / 2}} \cdot \frac{3}{2} x^{1 / 2}$
Outside integral. Using $u=x^{3 / 2}$,

$$
\int_{0}^{4} e^{x^{3 / 2}} \cdot \frac{3}{2} x^{1 / 2} \mathrm{~d} x=\int_{0}^{8} e^{u} \mathrm{~d} u=\left.e^{u}\right|_{u=0} ^{u=8}=e^{8}-1
$$

## "Reversing" a $\iint$

Since there is no formula for $\int \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} x$, if you have to find $\int_{-2}^{2} \int_{y^{2}}^{4} \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} x \mathrm{~d} y$ by hand, the only way to do this is to use the fact that

$$
\int_{-2}^{2} \int_{y^{2}}^{4} \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} x \mathrm{~d} y=\iint_{D} \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} A=\int_{0}^{4} \int_{-\sqrt{x}}^{\sqrt{x}} \frac{3}{4} e^{x^{3 / 2}} \mathrm{~d} y \mathrm{~d} x
$$

and evaluate the $\mathrm{d} y \mathrm{~d} x$ version.

This is called "reversing the order of integration".

