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Warm-up: J kx? dx.
2




An iterated integral requires evaluating one integral after another. They will
always be definite integrals.

o The “inside” integral can give a formula as its answer.
o The “outside” integral will usually give a number as the answer.

8 1
Example from last week J [ 3xe®dydx = 3e® — 27 because
0 J0

| = |
o |nside: J' 3xeVdy = 3eV — BeX L IGRUEE gt 3
0 y=0
3 xX=238
o Qutside: J' (3e* —3)dx = 3e*—3x = 3% -27.
O x=0




3 5 3 ey
We can calculate J J yx*dxdy = J (39y)dy =|156}

1 J2 1
s &
~irs J Yyx2 dx = Just Llike the WATM—Up [ kx?2 dx = 39k,
2
Then J 39y dﬁ 166, just Like J 39t 4k = 186 (or J 39x% dx).
1 1



3 05 .
We can calculate J J sz dxdy = J (39y)dy = 156. x

T 3 Why are
Front students: J [ yx*dy dx =j ( )dx = 94 these the

same?

Back students: J J yx2 dydx = J (4x2)dx — 156c™ ;

2191 m 2
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Av\alysas 1: | $(x)dx
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Amalvsi;s 1: j £(x)dx

a

The advantage of this
version is that it Is
entirely 1D, which is
good since f(x) has
only 1 input.

 ,~0.30 x0.30 x0.30 0.30 x0.30 x0.30 x0.30 x0.30 x0.30 =0.30.

Area Anything
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Amatvs&s 2 ﬂf(x,j)cljd: :

"k = £ £(x ,v)cixdj

C
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If both the J ...dx and the f ... dy have constants (e.g., numbers) for the integral
bounds, then the iterated integral describes adding up values of a function

over a rectangular region.

For example,
“Integrate yx2 over the rectangle L= <37

3
means to calculate fl yx* dx dy = 156 from before.

3
The reason fl yx*dy dx is also 156 is because this integral setup

describes exactly the same xy-rectangle.



Although we cannot simply replace dxdy by dydx in a double integral, both of
these represent a tiny piece of area. For this reason it is common to see “dA”
used when writing double integrals.

For example,

s1n(y) . .
] dA, where R is the rectangle with 1 < x <9and0 <y < 7x.’
p X

means exactly the same thing as

T 9 _:
j [ J' sin(y) ndy”
0J1 4

X

or flg L;T il dydx ”.



The following tasks are exactly the same:

SIn
o Find H O) dA where R is the rectangle with ] <x <9and0 <y < 7.
R

X
sin(y) .
s Integrate f(x,y) = over the rectangle with (1, 0) as the bottom left
X corner and (9, x) as the top right corner.
sin(y) .
o Calculate dAwithR={(x,y): 1 <x<9, 0Ly < n}
px
sin(y) .
o Evaluate dA with R = [1,9] X [0,7].
i AGX
7 7 sin(y) 7 (7 sin(y)
¢ Find J J dxdy. @ Calculate [ J dydx.
G- e vl X

To qeb the answer, we have to do one of these.



S1n
Task: Find ﬂ ) dA where R is the rectangle with (1, 0) as the bottom left
p X

corner and (9, x) as the top right corner.

Answer: 2Ln(9)



\;0 LM,M & V5. WAASS

If f(x, y) is thought of as height, then HR fdA calculates volume (f > 0).
If f(x, y) is thought of as density, then HR fdA calculates mass (f > 0).
If f(x, y) is thought of as charge density, then HR fdA calculates total charge.

5 (3
o Example: f : f o dydx = 16 is the mass of a rectangle whose density
is f(x, y) = y (so it is more dense at the top, less dense at the bottom).




How can we calculate ﬂ (x + y)dA if D is the region below?
D

172 3 4 5 6

2 > 6 3
Answer: H (x+y)dA = J [ (x + y)dydx + J J (x + y)dydx

I, 0J1 2 J1
or various other sums of two iterated integrals.
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Example A: J [ (x + y)dydx = J (4x + 12)dx = 32.
0J1 0

—- N W B~ O1 O

e 2 3T DO

- DD W~ 01 O

2 ¢2x+1 2 16
Example B: [ { (x + y)dydx = J (4)62 -+ 2x)dx = (o
071 0

SRS EETNA S L6

The calculation of Task 2 is not very much harder than Task 2, but what does
this new iterated integral mean?
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2 2x+1
J (x + y)dydx.

2 5
Ex. A used J J (x + y)dydx. Ex. B used
0 J1

Do

eu—

- DD W~ 01 O
- NN W A~ 01 O

1 2 3 4 5 6 1 -2 338468 6

Rectangles and triangles are both very common regions for double-integrals.
What other regions can we use?



The way we write an iterated integral for ﬂ fdA depends on the shape of
the region D. D

right gtop top eright
o Rectangle: J J fdydx or J [ fdxdy
b

left ot. bot. Y left
right e top function
o L/R sides are walls (or points): J J fdydx
left < bottom fin.

top Jright in.

o A
left In.

@ Top and bottom are flat (or points): J
bot.



The way we write an iterated integral for ﬂ fdA depends on the shape of
the region D. D

There are two other common region shapes that we will not be using in this
course (but you might see them in other classes in the future):

stop angle pouter rad.
o Pie slice, ring, other piece of a disk: J [ frdrd@
start angle < inner rad.

b rd
o Region bounded by level curves: J J f J dudv
d C



o The expressions

1 ¢8 4 cv+1 e 3y
J Jx3dydx J J udu dv [ [ x> dydx
0 J2 1 Jy 2 Jsin(y)

are all examples of iterated integrals and double integrals (both).

® Expressions like ﬂ xcos(y) dA are also double integrals (but not iterated

integrals). i

However, | will often use “double” and “iterated” interchangeably.

o l|terated integrals can also be used for triple integrals JHR fdVin 3D, but
those are not part of this course.



Example: Find H ¢ dA with R bounded by y* = x and x = 4.
R
This could also be written “integrate ie(xm) over the region bounded by ...".

4
SEQF O: Draw the regiown,

Sﬁep 1: Wrikte an tkerated
inteqral.

SMF’ 2&3: Evaluate the
inside inkegral (2),
then the oubkside (3).




Example: Find H ¢ dA with R bounded by y* = x and x = 4.
R

SEQF? 1: Write awn iterated integral.

: ; Sfis ; \/)_C 3/2
l J %ex dxdy or [ J %ex dydx
)




Example: Find H ¢ dA with R bounded by y* = x and x = 4.
R

Step 1: Write an tterated integral.
0 il 4 oy/x
l J %exmdxdy or [ J %exmdydx
—2Jy? 0
Note: This cannot be f_zz j(? %exmdxdy
b@ﬁ& S J_z ) J4 .dx dy d@.S &Y Eb & S

A Te

ctangle (I I_z ; e dydx is -
also a r@.cﬁas»\gte)ﬂ g




Example: Find ﬂ ¢ dA with R bounded by y* = x and x = 4.
R

SEQF 1: Write awn iterated integral.

: ; b2 ] \/; 3/2
[ J %e’“ dxdy or [ J %ex dydx
)

& 0 =8
Step 2: Evaluate, starting with the inside integral.
4 v
J %eicmdx or [ =Py
4
7” —\/x

o . , 3/2
There is no formula with ()% = ™7,



Example: Find ﬂ ¢ dA with R bounded by y* = x and x = 4.
R

4 ry/x
SEQF 1: Write awn iterated integral. [ I %exwdydx
0

—V/x

Step 2: Evaluate, starting with the inside integral.

\/)_C 3 3 3 2l y=\/; 3 3/2 323 1/2
fisie X SRR X —_— X . —— X o it
[ = dy = 7e" =€ 2\& % X
_\/; y:—\/)_c

Oukside inteqgral. Using u = x3/2

4 S
312 3
J e -Exl/zdx — J edu = e*
0 0

U=3




. | B L . :
Since there is no formula for | —-e dx, if you have to find
i

by hand, the only way to do this is to use the fact that

2 g 4 cr/x
J [ %exmdxdy — H %exmdA e [ [
—2 Jy2 D 0 J—/x

y
and evaluate the dydx version.

This is called “reversing the order of integration”.




